p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2).8C22, (C2×D4).7C4, C4.46(C2×D4), C4○(C4.D4), (C2×C4).122D4, C4.D4⋊6C2, (C22×C4).6C4, (C2×C4).3C23, C23.9(C2×C4), C4○(C4.10D4), C4.10D4⋊6C2, (C2×M4(2))⋊9C2, C4.32(C22⋊C4), (C2×D4).45C22, (C2×Q8).39C22, C22.2(C22⋊C4), C22.10(C22×C4), (C22×C4).33C22, (C2×C4).7(C2×C4), (C2×C4○D4).3C2, C2.16(C2×C22⋊C4), SmallGroup(64,94)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for M4(2).8C22
G = < a,b,c,d | a8=b2=c2=1, d2=a2, bab=dad-1=a5, cac=ab, bc=cb, dbd-1=a4b, dcd-1=a4bc >
Subgroups: 121 in 75 conjugacy classes, 39 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4.D4, C4.10D4, C2×M4(2), C2×C4○D4, M4(2).8C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, M4(2).8C22
Character table of M4(2).8C22
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ14 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | -i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(10 14)(12 16)
(1 11)(2 16)(3 9)(4 14)(5 15)(6 12)(7 13)(8 10)
(1 8 3 2 5 4 7 6)(9 12 11 14 13 16 15 10)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,11)(2,16)(3,9)(4,14)(5,15)(6,12)(7,13)(8,10), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,11)(2,16)(3,9)(4,14)(5,15)(6,12)(7,13)(8,10), (1,8,3,2,5,4,7,6)(9,12,11,14,13,16,15,10) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,11),(2,16),(3,9),(4,14),(5,15),(6,12),(7,13),(8,10)], [(1,8,3,2,5,4,7,6),(9,12,11,14,13,16,15,10)]])
G:=TransitiveGroup(16,71);
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(2 6)(4 8)(10 14)(12 16)
(1 7)(2 4)(3 5)(6 8)(9 15)(10 12)(11 13)(14 16)
(1 10 3 12 5 14 7 16)(2 15 4 9 6 11 8 13)
G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (1,10,3,12,5,14,7,16)(2,15,4,9,6,11,8,13)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (2,6)(4,8)(10,14)(12,16), (1,7)(2,4)(3,5)(6,8)(9,15)(10,12)(11,13)(14,16), (1,10,3,12,5,14,7,16)(2,15,4,9,6,11,8,13) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(2,6),(4,8),(10,14),(12,16)], [(1,7),(2,4),(3,5),(6,8),(9,15),(10,12),(11,13),(14,16)], [(1,10,3,12,5,14,7,16),(2,15,4,9,6,11,8,13)]])
G:=TransitiveGroup(16,86);
M4(2).8C22 is a maximal subgroup of
C23.3C42 (C22×C8)⋊C4 2+ 1+4.2C4 C4○D4.D4 (C22×Q8)⋊C4 (C2×C42)⋊C4 (C2×C8)⋊D4 M4(2)⋊21D4 C42.9D4 C4○C2≀C4 C2≀C4⋊C2 C23.(C2×D4) (C2×D4).135D4 C4⋊1D4.C4 (C2×D4).137D4 M4(2).24C23 M4(2).25C23 C42.313C23 C42.12C23 C42.13C23 (C4×D5).D4 (C2×D4).9F5
M4(2).D2p: M4(2).40D4 M4(2).50D4 C42.427D4 M4(2).8D4 M4(2).9D4 M4(2).37D4 M4(2).38D4 M4(2).19D6 ...
(C2×C4p).D4: C23.5C42 (C2×C8).103D4 C42.131D4 M4(2).10C23 (C6×D4).16C4 (D4×C10).29C4 (D4×C14).16C4 ...
M4(2).8C22 is a maximal quotient of
C42.371D4 C23.8M4(2) C42.42D4 C23⋊M4(2) C23⋊C8⋊C2 C42.372D4 C42.66D4 C42.376D4 C42.69D4 C42.72D4 C42.409D4 C42.410D4 C42.78D4 C42.79D4 C42.417D4 C42.418D4 C42.84D4 C42.86D4 C23.15C42 C4×C4.D4 C4×C4.10D4 C42.97D4 (C22×C4).276D4 M4(2)⋊20D4 C42.128D4 (C4×D5).D4 (C2×D4).9F5
M4(2).D2p: M4(2).45D4 C42.115D4 M4(2).19D6 M4(2).21D6 M4(2).31D6 M4(2).19D10 M4(2).21D10 M4(2).31D10 ...
(C2×D4).D2p: (C23×C4).C4 C42.96D4 (C6×D4).16C4 (D4×C10).29C4 (D4×C14).16C4 ...
Matrix representation of M4(2).8C22 ►in GL4(𝔽5) generated by
0 | 1 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,0,0,2,1,0,0,0,0,2,0,0,0,0,1,0],[1,0,0,0,0,4,0,0,0,0,1,0,0,0,0,4],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[0,0,0,4,3,0,0,0,0,4,0,0,0,0,3,0] >;
M4(2).8C22 in GAP, Magma, Sage, TeX
M_4(2)._8C_2^2
% in TeX
G:=Group("M4(2).8C2^2");
// GroupNames label
G:=SmallGroup(64,94);
// by ID
G=gap.SmallGroup(64,94);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,158,963,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^2=1,d^2=a^2,b*a*b=d*a*d^-1=a^5,c*a*c=a*b,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=a^4*b*c>;
// generators/relations
Export